ボックスカルバートの基礎地盤対策 — マットレスエ法のフィールド試験施工について —

釧路開発建設部	釧路道路事務所	第3工務課	○小澤	悠
釧路開発建設部	釧路道路事務所	第3工務課	谷野	淳
釧路開発建設部	釧路道路事務所	計画課	中野	賢也

北海道横断自動車道阿寒ICから釧路西IC間(L=17km)は、道東地域特有の泥炭層・シルト 質粘性土層・緩い砂層で構成された軟弱地盤を有している。今後、道路30基・水路10基のボッ クスカルバートを構築する計画であるが、許容支持力を満足するためには固結工法による地盤 改良工が必要となり、建設コストの縮減が課題である。

本論文は、ボックスカルバートの基礎地盤対策としてマットレス工法(中詰材の砕石をジオ シンセティックスで巻上げた盤状構造)を採用するための試験施工の概要および結果について 報告するものである。

キーワード:軟弱地盤、沈下、支持力、ジオシンセティックス

1. はじめに

北海道横断自動車道「阿寒ICから釧路西IC間(L= 17km)」は、釧路市阿寒町下舌辛から釧路市市街地近 郊を結ぶ高規格幹線道路で、全区間の約75%が平野部の 盛土区間となり、盛土部には道路30基・水路10基のボッ クスカルバートが計画されている(図-1)。

平野部の地盤は、表層部に泥炭層(層厚1~3m程度) が分布し、砂層(層厚5~10m程度)を挟在し、下層部 にはシルト質粘性土層(層厚10~25m程度)が分布する 泥炭性軟弱地盤が形成されている。

道東地域の地盤を形成する泥炭の特徴としては、道央地域に分布する石狩低地帯と比較すると、層厚が薄い

(⊭1~3m)、間隙比が小さい(æ3~15)、含水比が小 さい(w=100~500%)傾向にあり、さらに少雪低温地域 のため未分解の繊維質を呈している。このため、載荷盛 土による圧密沈下が速く、比較的迅速な地盤の強度増加 が期待でき、プレロード工法に適した地盤といえる。こ れは、道東地域特有の地盤特性といえる。

これまで軟弱地盤上にボックスカルバートを構築する 場合の基礎地盤対策としては、その大半がプレロード工 法により対応可能であった。しかし、平成21年度の「道 路土工-カルバート工指針」改訂により、地盤の許容鉛 直支持力度はカルバート底面地盤の極限支持力の1/3

(常時安全率3)を満足させることが明記され、従来の プレロード工法による対策では支持力を確保できなくな ってしまった。

これにより、ボックスカルバートの基礎地盤対策とし ては固結工法による地盤改良が必要となり、従来のプレ ロード工法よりも大幅なコスト増となってしまうことが 大きな課題となった。そこで、建設コスト縮減を念頭に

Ozawa Haruka, Tanino Jun, Nakano Kenya

した基礎地盤対策工として、固結工法より概算13億円 (直工費)のコスト縮減が可能となる「プレロード工法」 (沈下収束および基礎地盤の強度増加対策)+「マット レス工法」(支持力対策)について検討するに至った。

マットレス工法とは、中詰材の砕石をジオシンセティ ックスで巻上げ盤状構造としたもので、理論の検証を行 った文献¹⁾や実証試験の報告²⁾が少なく、国道・高規格 幹線道路での実績も無いのが実情である。このため、本 線への採用の可否を判断することを目的に、マットレス 工法の効果確認のためのフィールド試験施工を行った。

本論文は、この試験施工の概要および結果について報 告するものである。

図-1 フィールド試験施工箇所図

2. マットレス工法の概要

マットレス工法とは、軟弱な基礎地盤上に高強度補強 材(ジオシンセティックス)と中詰材(砕石)を用いて 立体的かつ盤状に形成した構造体を敷設し、上載構造物 の荷重分散および補強材と中詰材のせん断抵抗を発揮さ せることによって基礎地盤を補強する工法である(図-2)。なお、ジオシンセティックスとは、ジオテキスタ イルやジオグリッド等の補強材の総称であり、ここでは 総称して「補強材」と呼ぶ。

シンセティックスで巻上げた盤状構造) 図-2 マットレス工法の概念図

マットレス工法の現行設計法は、「ジオグリッド工法」 ガイドライン³および「地盤補強技術の新しい適用」-他工法との併用技術-⁴⁾に示されており、マットレスの 補強効果としては、下式(1)~(4)および図-3に示すように、 (a)中詰材のせん断抵抗効果(中詰材のせん断抵抗力S)、 (b)補強材による引き上げ効果(補強材の引張力T)、(c) 上載荷重の荷重分散効果(分散荷重p)が期待できるも のである。

(a)
$$S = \left(\gamma_1 D_f H + \frac{1}{3}\gamma_2 H^2\right) K_p \tan \phi_2 \tag{1}$$

$$K_p = \tan^2 \left(45^\circ + \frac{\phi_2}{2} \right) \tag{2}$$

(b)
$$T = 2T_D \sin\theta$$
 (3)

(c)
$$p = \frac{qB - S - T}{B + 2H \tan \psi} + \gamma_2 H$$
(4)

Ozawa Haruka, Tanino Jun, Nakano Kenya

- ここに,
 - B :載荷幅 (m)
 - H :マットレスの厚さ (m)
 - $D_{\rm f}$:マットレスの根入れ深さ (m)
 - q : 載荷荷重(荷重強度) (kN/m²)
 - ψ :荷重の分散角 (°)
 - T_D :補強材の設計引張り強さ (kN/m)
 - p : マットレス下面での分散荷重 (kN/m²)
 - θ : ジオグリッドの許容伸びに対する変位角 (°)
 [ガイドラインでは θ=25°]
 - γ1 : 埋め戻し地盤の単位体積重量 (kN/m³)
 - γ2 : 中詰め材の単位体積重量 (kN/m³)
 - φ₂ : 中詰め材のせん断抵抗角 (°)
 - [一般に C-40 か RC-40 を用いるため $\phi_2 = 45^\circ$]

なお、現行の設計法³⁴⁴は、上載荷重を荷重分散角 ψ=45°で低減した載荷荷重(p)に対して、許容鉛直支持力 度を確保するための補強材の引張力(*T*_D)および必要マッ トレス厚(*H*)を求めるものである。しかし、式中の①変 位角(*θ*)および②マットレスの敷設幅(ボックス端部か らの張出し量)の適正さについては検証が不十分で、こ の計算式での課題となっていた。

今回の試験施工では、上記①,②の課題の整理のため、 無対策(基礎砂利のみ)との比較やマットレス構造体を 異なる張出し量にした場合の動態観測を実施し、マット レス工法の有意性や適正なマットレス敷設幅等を決定す るための基礎データを収集するものとした。

試験施工の概要

試験施工は、No.4ボックスカルバート箇所(P=67,765 付近)の本線プレロードの盛土管理を実施し、プレロー ド撤去後の地盤(表-1)に、図-4に示すように、「Type-1:マットレス工法」と「Type-2:基礎砂利のみ」の2ケ ースの基礎地盤対策工を構築し、上載荷重として土のう による3段階の載荷条件(図-5)で実施し、その後放置 して各計測結果の推移を確認した。なお、土のうは、最 下部では荷重を均一に伝えるため、D・BOXと呼ばれる 直方体状のものを、それ以外には通常の大型土のうを用 いている。

表-1 試験施工箇所の地盤特性(プレロード前後)

地下 水位 GL-	土層名	土層 記号			コーン 貫入 抵抗値 (素地)	単位 体積 重量	ブレロード前 (素地)		ブレロード後 (強度増加後)	
			深度 層厚 Z (m) (m)	層厚			粘着力	内部 摩擦角	粘着力	内部 摩擦角
				qc (kN/m ²)	γt (kN/m ³)	C (kN/m ²)	ф (°)	C (kN/m ²)	¢ (°)	
- 0,9m	WE 444 - 1				700	170				
	柏住工	Acl	4.40	4.40	700	17.0	35	0	6/	0
	砂礫	Ksg1	6.10	1.70		20.0	0	40	0	40
	砂質土	Ks5	7.00	0.90	81	19.0	0	40	0	40

試験施工での計測項目は、図-6に示すとおり、土庄計 による基礎地盤対策工の上面と下面に作用する鉛直土圧 の計測、補強材に貼付したひずみゲージによるひずみ発 生状況の計測、沈下板による上載荷重による荷重直下お よび周辺地盤の沈下量の計測である。写真-1~写真-4に、 一連の現場状況を示した。

図−6 計器配置断面図【試験施工】

Ozawa Haruka, Tanino Jun, Nakano Kenya

写真-1 補強材敷設状況

写真-2 基礎地盤対策工設置完了

写真-3 載荷1段目(D·BOX)設置完了

写真-4 載荷3段目(大型土のう)設置完了

4. 試験施工結果

4.1 プレロード工法

(1) プレロード盛土の許容沈下量

「マットレス工法」は基礎地盤の支持力対策であるの で、この工法を採用する際には、沈下対策として「プレ ロード工法」を先行する必要がある。このプレロードの 撤去判定については、構造物への沈下の影響を最小限に するため、許容残留沈下量を最終沈下量に対して10cm 以下とし、沈下の収束判定には、沈下板計測結果に加え、 地盤内の沈下対象層に設置した間隙水圧計の消散状態を 確認して最終的な沈下収束判定を実施した。

(2) プレロード盛土の追加盛土判定【新手法の提案】

プレロード工法の盛土厚は、施工前の沈下解析により 設定されるが、解析時と施工時の沈下量が合致すること はなく、施工時の沈下管理により余盛り量の増減を再検 討することになっている。

この余盛り量については、盛土が完了してからの沈 下計測により判定することがほとんどであるが、当該プ レロード盛土において、盛土完了前に判定する手法を考 案し検証した。

図-7に示すように、施工中の盛土施工中断時(休工日 や降雨による休工等)を利用し、施工中に3段階の盛土 厚で双曲線法により最終沈下量を推定(図-7左図)し、そ の結果から盛土厚と沈下量の関係図を作成(図-7右図)す ることで、最終的に必要な盛土厚を算定する方法を検証 した。この手法により、当初FH+10cm(余盛り)での設 計に対し、FH+0.4m(余盛り)に変更し、工程の遅延な くプレロード盛土を完成させることができた。

余盛り変更後のプレロード盛土の最終沈下量について は、図-8(上2段目の図)に示すように、変更後の沈下 量(40cm)に、実測値が合致していることが分かる。

(3) プレロード盛土の沈下収束判定

図-8に当該プレロード盛土の施工(最上段)における 盛土の沈下量(上2段目)、地盤内の間隙水圧(下2段目) の推移、観測孔による孔内水位(最下段)の推移を示し た。当該箇所における沈下収束判定は、ボックスカルバ ートを対象とするため、本線盛土等で採用されている沈 下板を用いた双曲線法に加え、間隙水圧の収束状況も併 用して撤去判定に用いた。このとき、間隙水圧計による 管理は手間とコストがかかるので、簡素化するための代 替として、【代替案①】三成分コーン貫入試験による間 隙水圧消散試験と【代替案②】孔内水位観測孔による盛 土内水頭計測との整合性についても検証した。

図-8より、盛土完了(8月初旬)から半月ほどで沈下 が収束状態になっていたが、間隙水圧は静水圧まで到達 しておらず減少傾向が続いていたので放置を継続した。 その後、9月上旬まで放置し沈下の進行が収束状態とな り、間隙水圧は残圧(静水圧+10kPa程度)を残して一定 状態となったため、間隙水圧が消散された状態にあると 判断し、放置後約1ヶ月でプレロード盛土を撤去した。

また、間隙水圧計測を簡素化するための【代替案①】 については、概ね間隙水圧計測結果とほぼ同等となって おり、【代替案②】については、盛土内観測孔の水頭

(1.0m き**20開**線水圧計の計測結果が変動および測 定値ともに精度よく一致することが確認できた。以上よ り、盛土内の水位観測や三成分コーン貫入試験(間隙水 圧消散試験)により地盤内の間隙水圧を推定でき、沈下 収束判定にも活用できることが分かった。

4.2 マットレス工法

(1) 各載荷段階での土圧分布状況 (Type-1, 2)

図-9に各載荷段階での基礎地盤対策工の上面と下面の 載荷中央部に作用する鉛直土圧の関係を示した。なお、 土のうによる上載荷重の各載荷段階での土被り圧は、載 荷1段目23.0 kPa,載荷2断面13.3kPa,載荷3断面12.8kPaで、全 載荷荷重は49.1kPa程度である。

これより、載荷中央部では、Type-1(マットレス工 法),Type-2(基礎砂利のみ)とも基礎上面と下面に作用 する鉛直土圧は概ね同等であり、基礎上面に作用する土 圧がそのまま基礎下面の支持地盤に伝達していることが わかる。また、両者の土圧に差は生じていないことが確 認できた。

図-10は各載荷段階での基礎地盤対策工の上面と下面 の端部に作用する鉛直土圧の関係を示したものである。 なお、基礎上面に作用する鉛直土圧については、分散角 ψ=45°では載荷端部の値、分散角ψ=63.4°では載荷中央部 の値を用いている。

これより、載荷端部では、Type-1(マットレス工法),Type-2(基礎砂利のみ)ともに基礎上面に作用する 鉛直土圧は、中央部に作用する土圧(図-9参照)と比較 して、荷重が分散され減少していることが分かる。また、 分散角*ψ*=45°での両者を比較すると、マットレス工法の 土圧は、基礎砂利のみよりも1/4程度に土圧が低減して いることから、基礎下面の支持地盤に作用する補強材に 引張り力が作用し土圧が低減(補強材の引き上げ効果に より荷重が低減)しているものと判断できる。

一方、マットレスの敷設幅を載荷端部から2mとした 場合、荷重分散角ψ=63.4°の位置であっても土圧が係る 状態となっていることより、マットレス構造体を載荷端 部で張出し量を増すことで、上載載荷の分散効果がさら に期待できることを意味している。

図-10基礎上面と下面に作用する土圧(載荷端部)

(2) 各載荷段階での補強材のひずみ発現状況(Type-1)

図-11にマットレス工法における各載荷段階での基礎 地盤対策工上面に作用する鉛直土圧と補強材のひずみ量 の関係を示した。これより、マットレス敷設幅の相違 (載荷端部からのマットレス張出し幅:L側0.4m, R側 2.0m)により、補強材に作用するひずみの発現状況が異 なっていることが確認できた。

L側の載荷端部からのマットレス張出し幅0.4m(ψ=45°

Ozawa Haruka, Tanino Jun, Nakano Kenya

の範囲まで敷設)での計測結果では、基礎上面と下面の 補強材に作用するひずみは、両者とも引張側に作用して いる。一方、R側の載荷端からのマットレス張出し幅 2.0m(ψ=45°を超える幅(ψ=78.7°)までマットレス敷設) での計測結果では、基礎下面の補強材に作用するひずみ は、ψ=45°を超える範囲(0.4m,0.8m,1.4m,2.0m)より圧縮 側に作用しており、張出し幅0.8m地点で最大の圧縮ひず み状態となっている。これは、ψ=45°より外側の補強材 に基礎下面に作用する上載荷重がぶら下がった状態(基 礎下面に作用する荷重を補強材の引張り力により引き上 げる状態)にあることを示している。

これより、適正なマットレス敷設幅(補強材に十分な 引張り力を作用させるために必要となる幅)は、荷重分 散角 ψ =45°以上の幅を確保する必要があるものと判断で きる。

図-11 基礎上面に作用する土圧と補強材ひずみ量の関係

(3) 各載荷段階での沈下状況(Type-1,2)

図-12に各載荷段階での沈下状況を示した。これより、 マットレス敷設幅の違い(載荷端部からのマットレス張 出し幅:L側0.4m、R側2.0m)により、発生する沈下量に 差が生じていることが確認できた。

L側の載荷端部からのマットレス張出し幅0.4m (ψ=45°の範囲までマットレス敷設)での計測結果では、Type-1 (マットレス工法),Type-2 (基礎砂利のみ)とも載荷中 央部で発生する沈下量と同等の沈下量が載荷端部で発生 し、両者 (Type-1,2)の沈下量に差は生じていない。

一方、R側の載荷端部からのマットレス張出し幅2.0m (*ψ*=45°を超える幅(*ψ*=78.7°)までマットレス敷設)で の計測結果では、載荷端部で発生する沈下量は中央部よ りも低減されており、また、張出し幅0.8m地点では中央 部の半分程度、2.0m地点では1/3程度の沈下量となって いる。

これより、マットレス工法の敷設幅が、荷重分散角 ψ =45°の範囲までの場合では、沈下低減効果は認められ ないが、 ψ =45°以上の幅を確保することで沈下を低減さ せる効果があるといえる。

5. まとめ

前述までの試験施工(プレロード工法+マットレス工 法)による知見をまとめると以下に示すとおりである。

【プレロード工法】

(1) プレロード盛土の追加盛土判定では、盛土施工中に3 段階の盛土厚で双曲線法により最終沈下量を推定し、盛 土厚と沈下量の関係図を作成し、最終的に必要な盛土厚 を算定した結果、工程の遅延なくプレロード盛土を完成 させることができ、今後の盛土管理に適用できる。

(2)ボックスカルバートのプレロード盛土の沈下収束判 定は、沈下板(残留沈下量10cm以下)と間隙水圧(静水 圧+10kPa程度)にて判定する。間隙水圧計の代替として、 水位観測孔による水頭観測や三成分コーン貫入試験(間 隙水圧消散試験)を適用し簡素化することもできる。

【マットレス工法】

(3) マットレス工法の土圧計測結果により、マットレス 工法は、支持地盤に作用する荷重を低減させる効果があ ることが確認できた。今回の試験施工では載荷端におい て1/4程度以上の土圧低減が確認された。

(4) マットレス工法のひずみ計測結果により、適正なマットレス敷設幅(補強材に十分な引張り力を作用させるために必要となる幅)は、荷重分散角ψ=45°以上の幅を確保する必要があるものと判断できた。

(5)マットレス工法の沈下計測結果により、マットレス 工法の敷設幅が、荷重分散角ψ=45°の範囲までの場合で は、沈下低減効果は認められないが、荷重分散角ψ=45° 超える幅を確保することで沈下量を低減させる効果があ ることが確認できた。

(6)以上より、マットレス工法は、補強材に引張り力を 作用させる適正な敷設幅を確保することで、支持地盤に 作用する鉛直荷重を低減させることが確認できた。

今後、実施工に反映させることで、大きな建設コスト 縮減が可能な、支持力対策として有効な工法であるとい える。

Ozawa Haruka, Tanino Jun, Nakano Kenya

6. おわりに

今回の試験施工は、マットレス張出し部は、無載荷で フリーの状態となっているが、実際の施工では盛土載荷 により拘束された状態となる。

そのため、今後は、二次元FEM解析により試験施工結 果を再現し、その結果を反映させた実物大ケースでの解 析を行い、適正なマットレス幅の検討等を行う予定とし ている。

謝辞

最後に今回の試験施工を実施するにあたり、計器配置 等のご指導を頂いた室蘭工業大学大学院木幡行宏教授、 寒地土木研究所林憲裕上席研究員、林宏親総括主任研究 員、橋本聖研究員、ならびに、設計・施工・計測等にご 協力頂いた阿寒共立土建株式会社、株式会社ドーコンの 関係各位に深く感謝の意を表す。

参考文献

 1) 落合・林・塚本・朱:ジオグリットマットレス基礎の荷重 分散効果とその評価,第8回ジオテキスタイルシンポジウム報 6, pp. 19-28, 1993. 12.

2) 弘中・平井・谷津:載荷実験によるマットレス工法の補強 メカニズムの解明, ジオシンセティックス論文集第20巻, pp.211-216, 2005.12.

3) ジオグリット研究会:「ジオグリット工法」ガイドライン (第1分冊) -材料試験法,設計法ガイドライン-,pp.219-228,1990.7.

4) (社) 地盤工学会: 地盤補強技術の新しい適用 一他工法との併用技術-, pp. 60-69, 2006. 9.