海氷存在海域における波浪推算手法 および予報精度の検討

(独) 土木研究所寒地土木研究所 〇菅原 吉浩

上久保勝美

山本 泰司

海氷存在海域における波浪推算手法として、海氷密接度に応じて風速を減少させる手法の再 現性について、波浪推算モデル SWAN を用いて検討した。その結果、従来実施されていた海氷 域を陸域として扱う手法に比べて、再現性が大幅に向上することが明らかとなった。また、本 手法を用いて海氷存在期間中の波浪予報精度を検討した結果、5日先迄であれば 0.5m 以下の誤 差で予報が可能であることが確認された。

キーワード:波浪推算、SWAN、オホーツク海、GFS、波浪予報

1. まえがき

地球温暖化の影響により、オホーツク海沿岸の海氷面 積が近年減少傾向にある¹とともに、将来的にも著しく 減少する可能性が高いことが気象庁²により報告されて いる。このため、北海道のオホーツク海沿岸の防災体制 を検討していく上で、将来来襲する高波浪の推定および 波浪予報技術の構築が必要となる。これらの検討に際し ては、海氷存在海域における波浪推算手法が構築されて いる事が前提となるが、十分な検討がなされていない。

このため、本研究では海氷存在海域における波浪推算 手法について、波浪推算モデル SWAN を用いて検討す る。また、構築した手法により海氷存在時の波浪予報精 度について検討する。

2. 検討方法

波浪推算の計算領域は図-1 に示すように、第1領域 と第2領域の2段階ネスティングで実施した。波浪推算 モデルはデルフト工科大学で開発された SWAN (Simulating Waves Nearshore、CycleIII Ver.40.81)を用いた。
格子間隔は第1領域が 0.1°、第2領域が、0.0333°、時 間ステップは第1領域が 10min、第2領域が 5min とし、
周波数分割数は 30 成分(0.04~1.0Hz)、方向スペクトル分 割数は 36 成分とした。風による波の発達項については、 Janssen³を用いた。

海上風データは NCEP (National Centers for Environmental

Prediction)の Web 上で公開されている 10m 高度の風速再 解析値 (NCEP-Reanalysis2、空間解像度 1.875°×1.905°、 時間解像度 6hr)を用いた (以下、NCEP 風と呼ぶ)。

再現計算は、12月~3月の海氷来襲時期(以下、海氷 期)と4月~11月(以下、通常期)に分けて検討した。 対象とする波浪事象は、1979~2008年の30年間の内、 海氷期と通常期のそれぞれにおいて、各年の最大有義波 高が観測された上位10ケースを対象とした。ただし、 海氷期については、海氷存在海域での波浪推算の再現性 を検討する目的から、サハリンの南端(北緯約46°) より南側に海氷が存在しないケースは対象外とした。

推算値と比較する現地波浪データは、水深 50m 地点 のナウファス紋別(N44°19′04″、E143°36′25″) ⁴⁾を用いた。1ケース当たりの波浪推算期間は、最大有 義波観測日の前後10日間(計20日)とした。また、海 氷域の分布範囲は、気象庁⁵が公開している5日毎の海 氷分布図を用い、海氷画像データから RGB カラー情報 を抽出し密接度を数値化したデータを用いた。

海氷期の波浪推算を行うためには、海氷存在時の周 波数スペクトル形状が明らかとなっている必要がある。 笹島ら⁹は、海氷存在時の風波の周波数スペクトル形 状を提案しているが、有義波諸元が既知である時の式 形となっており風から波を推算することが出来ない。 このため本検討では、**表-1**に示す手法により検討した。

1つめは(手法 1-1~14)、氷海域を陸域として扱 う手法である。この内、手法 1-1 と 1-3 については、水 ロら⁷が推算精度を比較しており、海氷密接度 4以上を 陸域として扱うと実測波高に近くなることを確認して いる。また、著者ら¹⁰も、手法 1-1 の再現性を検討して いるが、海氷を陸域として扱うことにより通常期に比 べて波浪が抑制されるなど課題が残っていた。

2つめ(手法 2)は、日々の海氷の移動を考慮する ため、海氷密接度に応じて風速を低減する方法である。 この手法の詳細は3章で述べる。3つめ(手法3)は、 手法1と手法2を組合わせたものである。

4つめ(手法4)は、SWANのHOTFILEコマンドを 用いて、海氷の移動を考慮する手法である。HOTFILE コマンドとは、計算終了時の波高、周期、スペクトル などの計算領域内全体の波浪条件を、次の計算ステッ プの初期条件として引き渡すことが出来るものである。

したがって、海氷を陸域と見なして行った波浪推算 結果を、HOTFILE コマンドで次の計算ステップに順次 引き渡していくことにより、海氷の移動を考慮した波浪 推算が擬似的に可能となる。なお、1日毎の海氷地形デ ータを作成する事により、日々の海氷移動を考慮した波 浪推算も可能であるが、気象庁で公開されている海氷分 布が5日毎であるため、本検討でも5日毎に海氷分布を 更新させた。

3. 風速低減による氷海域の波浪推算(手法2)

(1) 海氷域波高の目標値

海氷域における波浪推算を行うためには、海氷域での 波浪の発達および減衰機構が明らかになっている必要が ある。海氷域での波浪減衰に関する既往の研究事例とし ては、Wadhams ら⁸がニューファンドランド沖での観測 結果を踏まえ、氷板下の波高減衰率 A が周期および氷 板厚の影響を受けることを確認している。また、堺ら⁹ は水理模型実験により、氷板下の波高伝達率は波浪の伝 播距離と共に指数関数的に減少すること、および密接度 10 相当の氷板厚さ別の減衰率 A を示している。なお、 海氷下の波高伝達率は、下記の式で表されている。

$$K_t = \exp(-Ax)$$

$$A = B \cdot f^n$$
(1)

	陸域とする 密接度の境界	推算期間中の 流氷分布	風速の 調整
手法 1-1	4以上	推算開始時で固定	無し
手法 1-2	4以上	波高ピーク時で固定	無し
手法 1-3	7以上	推算開始時で固定	無し
手法 1-4	7以上	波高ピーク時で固定	無し
手法2	流氷無し	無し	有り
手法3	7以上	推算開始時で固定	有り
手法 4-1	4以上	5日毎に変動	無し
手法 4-2	7以上	5日毎に変動	無し

図-2 SWAN1次元水路イメージ

ここに、*Kt*:: 氷板下の波高の伝達率、A: 減衰パラメーター、x: 氷板下の伝播距離(m)、B、n: 氷厚別のパラメ
 ーター、f: 波の周波数(Hz)

次に、海氷域での波の発達については既往の研究で明 らかとなっていないが、海氷部分の風速は波の発達に寄 与しないため、その部分での風速をゼロと見なすと海氷 域全体としては、密接度に応じて低減させた平均風速が 波の発達に寄与すると考えた。たとえば、密接度2では 海水面が80%現れていることから、本来の風速を20%低 減させることで、海氷域での波の発達を考慮できる。

以上より、減衰および発達の両者を合成した波高を、 計算で合わせ込む海氷域波高(以下、目標波高)とした。

(2) 手法2の1次元数値水路での再現性

SWAN における波の発達項は線形増大項と指数関数 項の2種類あるが、本検討では Janssen の指数関数項の みを考慮している。すなわち、風速を小さくすることで、 指数関数的に減衰する海氷域波高を擬似的に再現できる はずである。このことについて、SWAN による1次元 水路で検討を行った(図-2)。水路長 500km、水深を底 面摩擦等の影響を受けないよう 500m とし、風速を 10、 20、30、40m/s の4 ケース、境界での有義波高を 2、5、 8m の3 ケース、周期を 8、10、12sec の3 ケースとし、 風速を 0 から 100%の間で 5%刻みで変化させ、海氷域波 高に最も近づく風速の低減率を検討した。減衰パラメー ターA は、堺らの実験縮尺を 1/100 とした場合に、現地 スケールで 50cm の氷厚に相当するものを用いた。また、 水野ら¹⁰の実験結果から、密接度 5 の A は密接度 10 の A の 1/4 とした。密接度 2 の A については、密接度 5 と 10のAから線形外挿により求めた。

図-3に密接度2および密接度5での検討例を示す。密 接度2では波の発達分として風速を80%に低減させ、密 接度5では風速を50%に低減させている。密接度2の場 合、風速を 60%減少させることで、伝搬距離 50km 迄は 目標波高を再現している。なお、伝搬距離が 50km より 長くなると目標値以上に波が減衰するが誤差は 1m 未満 に収まっている。また、密接度5の場合では風速を75% 減少させることで概ね目標波高を再現できている。

表−2は、最確値を目標波高とした場合の誤差の二乗 平均平方根 (RMSE) の一覧である。全ケースの検討結 果より、密接度2では風速の低減率を60%、密接度5で は風速の低減率を75%とした場合が誤差が最も小さくな ったため、表-2 中もその場合の RMSE を示している。

全般的に、RMSE は 1m 以内に収まっており再現性が 高い。海氷域へ進入する波高が 8.0m の場合には誤差が 1m を超えるケースもみられるが、伝搬距離が長く (=200km)なると誤差が減少し、概ね 1m 以下の誤差に収 まっている。このことから、冬期の北海道のオホーツク 海沿岸部は、通常 200km 以上の広い範囲で海氷が接岸 しているため、実務上は問題ないと思われる。

なお、気象庁の海氷分布図は海氷密接度 1~3、4~6、 7~8、9~10の4段階で分類されている。このため以下 の検討では、密接度 1~3 においてはその中央値である 密接度 2 で代表させ、密接度 4~6 においては密接度 5 で代表させ、風速の低減率をそれぞれ 60%および 75% とした。なお、密接度 7~10 については風速をゼロとし、 この部分を陸域として扱った手法3と比較を行った。

4. 海氷存在時の波浪推算の再現性

(1) 風速再解析値の精度

波浪推算には、その外力である風速の影響が多分に影 響するため、NCEP 風の精度を検証した。観測風速は、 オホーツク海に最も近い気象庁の海上ブイ (No.21001、 N36.7°から 39.5°、E145.5°から 145.7°)を用いた。 対象期間は気象庁の観測データが存在する 1980 年~1991 年とした。なお、気象庁の海上ブイは 7.5m 高度の観測 風速であるため 10m 高度に変換した。また、NCEP 風は、 気象庁の海上ブイの周囲4点の値で線形内挿した。

図-4a)に風速の相関を示す。NCEP風は観測値に比べ 若干大きくバイアスはあるが、観測値とほぼ同程度であ る。図-4b)に、観測風速 10m以上を対象とした風向きの 相関を示す。NCEP の風向きは観測値と同程度であるこ とが確認できる。

(2) 通常期の再現性

図-5 は、通常期の計算結果の一例で、有義波高およ

Yoshihiro Sugawara, Katsumi Kamikubo, Yasuji Yamamoto

表-2 目標値からの二乗平均平方根誤差 (RMSE)

び有義波周期の時系列を示す。9月17日と9月23日に 観測波高のピークがあり、計算波高は観測波高に比べ若 干小さいが、経時的な変化が概ね再現されている。また、 有義波周期についても、経時的な変化が概ね再現されて いる。後述する図-7に、通常期の全10ケースについて の推算波高と観測波高の相関を示す。全般的には推算波 高は観測波高に比べて過小傾向であるが、相関係数は 081と良好な相関が確認された。

(3) 海氷期の再現性

図-6は、海氷期の観測波高と手法1から手法4の推算 波高を比較した一例である。図-6a)の期間については、 最初沖合にあった海氷が波高ピーク時に北海道東部沿岸 に近づく状況であった。このため、手法1-2 や手法1-4 では波高ピーク時の海氷分布で固定しているため、波高 と周期が小さくなっている。また、手法1-1に比べ手法 1-3 の方が観測値に近く、水口ら⁷の結果とは異なり密 接度7以上を陸域とした方が密接度4以上を陸域とした 場合よりも再現性が良い。この理由は、水口らの検討は 海氷が少ない高波浪事象を主に対象としており、本検討 で抽出した海氷が北海道沿岸部に接近する事象とは異な るためと考えられる。

次に、手法2については、波高だけで無く周期の再現 性も良く、全手法の中で最も再現性が良い。手法3につ いては、密接度7以上を陸地とみなした影響により波高 が過小傾向である。海氷(陸域)の移動を考慮した手法 42は、波高ピーク時の海氷接岸による波浪減衰を過大 に評価するため、観測値に比べて波高が小さい。

図-6b)に、別な期間の推算結果を示す。手法 1-2 や手法 14 については、図-6a)と同様に他の手法に比べて波高および周期が小さくなっている。また、手法 2 と手法3の風速を調整した手法以外の手法については、観測値とは異なり波高のピークが2つ存在し、経時的な傾向を再現出来ていない。この理由としては、図の右上に2月10日~14日の海氷分布を示しているように、密接度3以下の海氷が道北に多く接岸しているが、手法2および手法3以外ではこの部分を海面とみなしており、波浪が過剰に発達したためと考えられる。一方、手法2については図-6a)と同様に再現性が最も高い。

図-6c)には、海氷が比較的少ない場合の推算結果を示 す。各手法に明確な差が無いが、従来の海氷面積を陸域 とする手法では推算波高は観測波高に比べて 1m 程度大 きくなっている。この理由は、従来手法では密接度 3以 下の氷海域を海面とみなしているためと考えられる。一 方、密接度 3以下の風速を低減させている手法 2および 手法 3 では観測波高のピーク値を概ね再現している。

図-7 に、各手法の推算波高と観測波高の相関を示す。 なお、手法0とは海氷が全く無いものとして計算した結 果である。各手法とも再現性が良く、良好な相関を示し ている。ただし、手法0では近似直線の傾きが0.96と一

図-6 海氷期の推算結果の一例

見すると最も再現性がよくなっているが、通常期の近似 直線の傾きが 0.85 であることを勘案すると、推算結果 がやや過大傾向と考えられる。

表-3 に、各手法の有義波高の相関係数および誤差を 示す。なお、極値波高を求める観点から、5m以上と5m

Yoshihiro Sugawara, Katsumi Kamikubo, Yasuji Yamamoto

図-7 各手法おける観測および推算波高の相関

表-3 各手法の有義波高の相関および誤差

		通常期	手法1-1	手法1-2	手法1-3	手法1-4
近似直線傾き	5m未満	0.74	0.74	0.66	0.80	0.71
近似直線傾き	5m以上	1.28	1.21	1.19	1.23	1.21
近似直線傾き	全波高	0.85	0.83	0.77	0.88	0.80
相関係数R	5m未満	0.71	0.51	0.47	0.54	0.44
相関係数R	5m以上	0.80	0.66	0.61	0.68	0.65
相関係数R	全波高	0.81	0.74	0.74	0.76	0.73
基準化RMS誤差	rmse ₉₅	18.85	19.32	27.43	12.91	21.89
基準化RMS誤差	rmse ₁₀₀	24.70	14.72	13.80	14.65	14.94
		手法2	手法3	手法4-1	手法4-2	手法0
近似直線傾き	5m未満	0.77	0.68	0.71	0.76	0.90
近似直線傾き	5m以上	1.13	1.15	1.20	1.22	1.24
近似直線傾き	全波高	0.83	0.77	0.80	0.84	0.96
相関係数R	5m未満	0.57	0.54	0.43	0.33	0.59
相関係数R	5m以上	0.66	0.51	0.63	0.67	0.72
相関係数R	全波高	0.77	0.75	0.71	0.69	0.77
基準化RMS誤差	rmse ₉₅ (%)	16.01	26.10	24.34	15.89	6.27
基準化RMS誤差	rmse ₁₀₀ (%)	12.94	15.10	13.16	14.50	14.02

未満の波高で分けて整理した。表中のmseとは、森ら ¹¹⁾と同様に Quantile 値(任意データの順位を全体のデー タ数に対する割合で示す)における観測値からの誤差を 基準化したもので、Quantile 値が 6~95%値のmse を mse₉₅、96~100%値のmse をmse₁₀₀としている。全波高 を対象とした相関係数では手法 2 と手法 0 が再現性が高 くなる。また、5m 以上の相関では手法 0 が手法 2 より も高いが、極値付近の波高を対象とするのであれば、順 序統計量としてのmse₁₀₀で判断すべきであり、この観点 より手法 2 が確率波高を算出する上で最適な手法である と言える。

5. GFSデータによる氷海域の波浪予報

氷海域における波浪を予報する上では、風速データに 加えて海氷分布および密接度データが必要となってくる。 NCEP では予報データとして GFS (空間解像度 0.5° × 0.5° 、時間解像度 3hr)が web 上で無料で公開されてお り、この中には地上 10m 風速に加えて海氷密接度のデ ータもダウンロード可能である。ただし、GFS では海氷

Yoshihiro Sugawara, Katsumi Kamikubo, Yasuji Yamamoto

図-8 海氷期波浪予報の一例

の移動は考慮されておらず、米国全国氷センター(NIC) の衛星データをもとに、予報開始時直近の海氷分布が使 用されている。

予報精度の検討ケースは、2010 年および 2011 年の 1 月~3 月の内、海氷が北海道東部沿岸に近づいた 5 ケー スを選定した。1 ケース当たりの計算日数は 12 日とし、 最初の 5 日間は計算の助走期間(計算領域内に初期状態 の波浪場を再現するため)として NCEP FNL(空間解像 度 0.5°、時間解像度 6hr)の再解析データを用いた。ま た、追算(再現)値としては、風速を NCEP FNL、海氷 分布は気象庁の 5 日毎のデータを用いた。

図-8a)b)に、海氷期の波浪予報結果の一例を示す。両 者とも予報開始3日目までは予報(Forecast)と追算 (Hindcast)は同程度であるが、3日目以降は予報の精度 が低下し、観測値よりも大きめの傾向を示す。周期につ いては追算での再現性が特に良く、波の分散性により周 期の長い波が海氷下(風速を低減させた領域)を伝播す る効果が表れているようである。また、風速の調整を行 わない場合は、観測値よりも波高が大きくなり再現性は 悪い。なお、図-9に2010年~2011年の海氷分布の3日 先予報精度を示す。予報期間中の海氷の移動が考慮され ていないため、北海道沿岸域などの精度が50%以下とな

図-9 2010~2011年の流氷分布の3日先予報精度

っている。つまり、実際には北海道沿岸に海氷が接岸し ているにもかかわらず、予報では海氷が存在しない日数 が半分以上を占めており、このため予報では観測波高よ りも波高が増大する傾向となったと考えられる。

図-10 に全 5 ケースにおける波浪予報結果と観測波高 との相関を予報日数別に示す。予報結果は観測値に比べ て小さいが、図-7 の推算値が観測波高に比べ小さくな る傾向と同様であることから、予報自体の精度では無く SWAN の計算精度に依存していると考えられる。また、 相関については3日先予報で0.67と概ね相関が得られて おり、予報日数が短くなるほど相関が高くなる。

なお、観測波高を目標値とした場合の予報誤差の二乗 平均平方根(RMSE)は、1日先で0.45m、3日先で 0.46m、5日先で0.50m、7日先で0.64mと、予報日数が 長くなるほど精度が悪くなっているが、今回選定した5 ケースに関して言えば、5日先までであれば0.5m以下の 誤差に抑えられており、良好な予報精度であった。予報 期間中の海氷の移動を考慮することが可能となれば、さ らに予報精度は向上するものと思われる。

6. まとめ

本研究では氷海域における波浪推算手法および波浪予 報精度について検討した。この結果、以下のことが明ら かとなった。

- 氷海域における波浪推算手法として、海氷密接度 に応じて風速を減少させる手法は、従来実施され ていた氷海域を陸域として扱う手法に比べて、再 現性が大幅に向上することが明らかとなった。
- 2) GFS データを用いて海氷存在時の波浪予報精度について検討した結果、5日先迄であれば 0.5m 以下の誤差で予報可能であることが明らかとなった。

図-10 予報日数別の観測波高との相関

このことより、海氷期の高波浪来襲時においても 本手法は早期の防災体制の構築に寄与できるもの と思われる。

参考文献

- 菅原吉浩,大塚淳一,山本泰司,山下俊彦:オホー ツク海の流氷減少が波浪に与える影響,海洋開発論 文集,第27巻,2011.
- 2) 地球温暖化予測情報: 気象庁, 第7卷, 59p. 2008.
- Janssen, P.A.E.M.: Wave induced stress and the drag of air flow over sea waves, *Jour. Phys.Oceangraphy*, Vol. 19, pp.745-754, 1989.
- 4) 国土交通省港湾局全国港湾海洋波浪情報網ホームペ ージhttp://nowphas.mlit.go.jp/
- 5) 気象庁ホームページ http://www.data.kishou.go.jp/
- 6) 笹島隆彦,早川哲也,吉野真史,後藤智明:海氷存 在時における風波の周波数スペクトル特性,海岸工 学論文集,第43巻,pp. 431-435, 1996.
- 7) 水口陽介,林誉命:網走港における設計沖波の検討 について,北海道開発技術研究発表会論文集,第52 回,2009.
- Wadhams, P:Airbone laser profiling of swell in an open ice field, J.G.R., Vol.80, No.33, pp.4520-4528, 1975.
- 堺茂樹,笹本誠,片山潤之介,劉暁東,平山健一, 泉山耕,金田成雄:氷板による不規則波の変形に関 する実験,海岸工学論文集,第43巻,pp. 426-430, 1996.
- 水野雄三,谷野賢二,平沢充成,高橋哲美,長内戦治:海氷による波浪の減衰に関する一考察,海洋開発論文集,第7巻,pp. 7-11, 1991.
- 森信人,志村智也,安田誠宏,間瀬肇:地球温暖化 に伴う極大波高の将来変化予測,土木学会論文集 B2 (海岸工学), Vol.66, No.1, pp. 1231-1235, 2010.

Yoshihiro Sugawara, Katsumi Kamikubo, Yasuji Yamamoto